Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A quadrupole-quadrupole stacking synthon in (2,3,5,6-tetrafluoro-benzenethiolato- κS)(triphenyl-phosphine- κ P) gold(I)

Seiji Watase, ${ }^{\text {a }}$ Takayuki Kitamura, ${ }^{\text {b }}$ Nobuko Kanehisa, ${ }^{\text {c }}$ Masami Nakamoto, ${ }^{\text {a }}$ Yasushi Kai ${ }^{\text {c }}$ and Shozo Yanagida ${ }^{\text {b* }}$
${ }^{\text {a }}$ Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan, ${ }^{\mathbf{b}}$ Materials and Life Sciences, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, and ${ }^{\text {c }}$ Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Correspondence e-mail: yanagida@mls.eng.osaka-u.ac.jp

Received 24 December 2003
Accepted 21 January 2004
Online 10 February 2004
The title compound, $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{HF}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, with both aromatic and fluorinated aromatic rings in its molecular system, shows dimerization through a quadrupole-quadrupole stacking synthon. The dimer further aggregates through intermolecular $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, giving a supramolecular three-dimensional network.

Comment

Many approaches to the construction and control of supramolecular systems based on Au^{I} complexes have been reported (Hao et al., 1999; Hunks et al., 2000; Tzeng et al., 1999). Non-covalent interactions, such as $\mathrm{Au} \cdots \mathrm{Au}$ contacts, hydrogen bonding and the $\pi-\pi$ stacking synthon, play important roles in the molecular design of these systems and the architecture of their extended structures. The quadrupolequadrupole stacking synthon is induced by co-operation between electron-deficient fluorinated aromatic and electronrich aromatic rings, and contributes significantly to the assembly of molecules (Coates et al., 1997; Williams, 1993). The gold(I) phosphine thiolate complex $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)\right]$, (II), which has three phenyl and one perfluorinated phenyl rings, was the first example of an $A u^{I}$ complex tightly aggregated through electrostatic quadrupole interactions and $\pi-\pi$ stacking in the crystal (Watase et al., 2003). Such an aggregate is disassembled in solution, but a dimeric form still exists even in solution. These results suggest that the quadrupole interaction in such a molecular system is more effective than other intermolecular interactions, leading to a new class of supramolecular aggregation. In order to investigate whether the quadrupole interaction is a general phenomenon in this type of $A u^{I}$ complex, we have synthesized the title novel gold(I)
phosphine complex, $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SC}_{6} \mathrm{H}-2,3,5,6-\mathrm{F}_{4}\right)\right]$, (I), incorporating the tetrafluorobenzenethiolate ligand, $\mathrm{SC}_{6} \mathrm{H}-2,3,5,6-$ F_{4}. In this communication, we report the observation in (I) of a dimeric association through distorted dual quadrupole synthons, owing to the H atom at the para position of the thiolate ligand, and the supramolecular three-dimensional network observed in the compound.

(I)

The Au centre of (I) has linear two-coordinate geometry to the phosphine and thiolate ligands (Fig. 1 and Table 1). The $\mathrm{P} 1-\mathrm{Au} 1-\mathrm{S} 1$ axis deviates slightly from linearity [174.46 (8) ${ }^{\circ}$], and the $\mathrm{Au}-\mathrm{S}$ and $\mathrm{Au}-\mathrm{P}$ bond distances [2.306 (2) and 2.257 (2) Å, respectively] are normal for this type of gold(I) phosphine thiolate complex [literature values for $\mathrm{P}-\mathrm{Au}-\mathrm{S}$ angles are in the range 171.01-176.53 , for $\mathrm{Au}-$ S 2.285-2.303 \AA and for Au-P 2.253-2.269 \AA (Ahmed et al., 1999; de Vos et al., 1999; Forward et al., 1995; Kuz'mina et al., 1993; Nakamoto et al., 1993; Watase et al., 2003)]. The S1-C1 bond distance $[1.758(9) \AA]$ and $\mathrm{Au} 1-\mathrm{S} 1-\mathrm{C} 1$ angle [108.0 (3) ${ }^{\circ}$] correspond to those of analogous compounds ($\mathrm{S}-$ C distances in the range $1.739-1.801 \AA$ and $\mathrm{Au}-\mathrm{S}-\mathrm{C}$ angles in the range $96.35-110.82^{\circ}$) and show single-bond character for the thiolate.

The $\mathrm{Au} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$ torsion angle of 22.7 (9) ${ }^{\circ}$ in (I) is relatively small for this type of gold(I) compound, bringing the tetrafluorinated phenyl ring nearly parallel to the $\mathrm{P}-\mathrm{Au}-\mathrm{S}$ axis, similar to what is observed in the pentafluorobenzenethiolate analogue, viz. (II). This orientation brings an orthosubstituted F atom close to the Au centre, and the resulting Au1 $\cdots \mathrm{F} 1$ distance $[2.899$ (6) \AA] is much shorter than the sum of the van der Waals radii $(3.13 \AA)$ of Au and $\mathrm{F}(1.66$ and 1.47 A., respectively; Bondi, 1964), indicating an intramolecular close contact. In addition, one of the phenyl rings (containing atom C 7) of the phosphine ligand is almost parallel to the fluorinated phenyl ring (that containing atom C 1), but these rings are not coplanar. This characteristic conformation induces another intramolecular close contact, with an $\mathrm{F} 1 \cdots \mathrm{H} 2$ distance of $2.58 \AA$, which is shorter than the sum of the van der Waals radii $(2.67 \AA)$ of $\mathrm{H}(1.20 \AA)$ and F ; the $\mathrm{C} 2-\mathrm{F} 1 \cdots \mathrm{H} 2$ angle is 154.8°.

A remarkable structural feature of (I) is the dual intermolecular quadrupole interaction between the fluorinated phenyl ring of the thiolate ligand and a phenyl ring of the phosphine ligand of a neighbouring molecule, giving a pseudocyclic dimer structure (Fig. 2). The crystal structure of (I) has an identical space group and similar molecular packing to the pentafluorobenzenethiolate analogue (II). In (II), the two

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dotted lines show intramolecular close contacts.
phenyl rings of the quadrupole synthon are nearly parallel, with a dihedral angle of $1.8(3)^{\circ}$ (Watase et al., 2003). In (I), the stacking configuration of the equivalent two rings [containing atoms C 1 and $\mathrm{C}^{\text {i }}$; symmetry code: (i) $\left.1-x,-y, 1-z\right]$ is slightly distorted, with a dihedral angle of $4.3(3)^{\circ}$, showing a wedge shape from the S atom toward the aromatic H atom at the para position of the tetrafluorobenzenethiolate ligand (Fig. 3). As a result of such a wedge-shaped configuration in (I), the distance between the stacked rings [C1-ring...C7i-

Figure 2
The dimeric association of (I) through the quadrupole-quadrupole stacking synthon.

Figure 3
The wedge-shaped configuration of the quadrupole-quadrupole stacking synthon in (I).
ring $=3.47$ (1) \AA, calculated by the average shift of the six C atoms of the C^{i}-ring from the best plane of the C1-ring] is $0.08 \AA$ longer than that in (II). This wedge-shaped configuration is observed only in (I) despite the similarity in crystal packing between compounds (I) and (II), and despite the decrease in steric hindrance in (I) due to the smaller H atom at the para position of the thiolate ligand. This fact suggests that the introduction of the H atom into the highly fluorinatedphenyl ring may decrease the electronegativity of the ring and reduce the intermolecular quadrupole interaction, although another indirect effect of the substitution cannot be ruled out.

Although the quadrupole interaction is slightly lessened in (I), the unit cell is slightly smaller compared with (II), particularly the c axis, where the reduction is 1.0%. On the other hand, each phenyl and fluorinated-phenyl ring forms other $\pi-\pi$ stacking interactions, i.e. $\mathrm{C}_{6} \mathrm{H}_{5} \cdots \mathrm{C}_{6} \mathrm{H}_{5}$ [C7-ring $\cdots \mathrm{C}^{7 \mathrm{ii}}$ -

Figure 4
The two-dimensional network showing three types of synthon in (I), viz. $\mathrm{C}_{6} \mathrm{HF}_{4} \cdots \mathrm{C}_{6} \mathrm{H}_{5}$ (thick bars), $\mathrm{C}_{6} \mathrm{HF}_{4} \cdots \mathrm{C}_{6} \mathrm{HF}_{4}$ (dotted lines) and $\mathrm{C}_{6} \mathrm{H}_{5} \cdots \mathrm{C}_{6} \mathrm{H}_{5}$ (dashed lines). The C13- and C19-phenyl rings of the phosphine ligands have been omitted for clarity.
ring; symmetry code: (ii) $1-x, 1-y, 1-z]$ and $\mathrm{C}_{6} \mathrm{HF}_{4} \cdots \mathrm{C}_{6} \mathrm{HF}_{4}$ [C1-ring. $\cdot \mathrm{C}^{\text {iiii}}$-ring; symmetry code: (iii) $2-x,-y, 1-z]$, on opposite sides of each ring; the distances of their stacking synthons are 3.46 (1) and $3.69(2) \AA$, respectively (Fig. 4). These $\pi-\pi$ stacking synthons are responsible for the construction of a two-dimensional supramolecular network, which is built up along the c axis. The layers are also linked to each other through a T-shaped C $\mathrm{H} \cdots \pi$ intermolecular interaction between phenyl rings of the phosphine ligand, where the distance of this synthon is 2.855 (8) \AA [C13-ring. $\cdot \mathrm{H} 15^{\text {iv }}$; symmetry code: (iv) $\frac{1}{2}-x$, $\left.y+\frac{1}{2}, \frac{1}{2}-z\right]$.

Through these intra- and intermolecular interactions, the title complex forms a tightly packed three-dimensional assembly of dimers in the crystal.

Experimental

Tetrafluorobenzenethiol $(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ was reacted with [Au$\left.\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right](0.5 \mathrm{~g}, 1 \mathrm{mmol})$ in the presence of triethylamine $(0.1 \mathrm{~g}$, $1 \mathrm{mmol})$ in tetrahydrofuran for 3 h at room temperature. The white precipitate of $\mathrm{Et}_{3} \mathrm{NHCl}$ was filtered off and the tetrahydrofuran was removed under reduced pressure, giving a white residue. Colourless crystals of (I) were obtained by recrystallization from dichloro-methane- n-hexane.

Crystal data

$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{HF}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$
$M_{r}=640.38$
Monoclinic, $P 2_{1} / n$
$a=8.2743$ (3) \AA
$b=11.3537$ (3) \AA
$c=23.4382(8) \AA$
$\beta=96.579(1)^{\circ}$
$V=2187.4$ (1) \AA^{3}
$Z=4$

Data collection

Rigaku R-AXIS RAPID imagingplate diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.297, T_{\text {max }}=0.534$
23270 measured reflections

Refinement

Refinement on F^{2}

$R(F)=0.037$
$w R\left(F^{2}\right)=0.103$
$S=1.58$
3410 reflections
280 parameters
$D_{x}=1.944 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 28391
\quad reflections
$\theta=1.8-30.5^{\circ}$
$\mu=6.96 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Prism, colourless
$0.20 \times 0.14 \times 0.09 \mathrm{~mm}$

5018 independent reflections
3410 reflections with $F^{2}>3 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 13$
$l=-28 \rightarrow 30$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left\{0.05\left[\max \left(F_{o}{ }^{2}, 0\right)\right.\right.\right.$
$\left.\left.\left.+2 F_{c}{ }^{2}\right] / 3\right\}^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.93 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.98 \mathrm{e}^{-3}$

All H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and treated as riding.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Au1-S1	$2.306(2)$	$\mathrm{P} 1-\mathrm{C} 7$	$1.801(8)$
Au1-P1	$2.257(2)$	$\mathrm{P} 1-\mathrm{C} 13$	$1.823(8)$
Au1-F1	$2.899(6)$	$\mathrm{P} 1-\mathrm{C} 19$	$1.802(8)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.758(9)$		
			$111.8(3)$
S1-Au1-P1	$174.46(8)$	$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 13$	$111.6(2)$
S1-Au1-F1	$72.8(1)$	$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 19$	$106.6(5)$
Au1-S1-C1	$108.0(3)$	$\mathrm{Au} 1-\mathrm{F} 1-\mathrm{C} 2$	
Au1-P1-C7	$115.8(2)$		
			$42.4(7)$
Au1-S1-C1-C2	$22.7(9)$	$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 13-\mathrm{C} 14$	$-136.0(6)$
Au1-S1-C1-C6	$-160.3(6)$	$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 13-\mathrm{C} 18$	$55.3(7)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 8$	$26.1(7)$	$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 19-\mathrm{C} 20$	$-123.3(7)$
$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 7-\mathrm{C} 12$	$-157.3(6)$	$\mathrm{Au} 1-\mathrm{P} 1-\mathrm{C} 19-\mathrm{C} 24$	

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1163). Services for accessing these data are described at the back of the journal.

References

Ahmed, L. S., Clegg, W., Davies, D. A., Dilworth, J. R., Elsegood, M. R. J., Griffiths, D. V., Horsburgh, L., Miller, J. R. \& Wheatley, N. (1999). Polyhedron, 18, 593-600.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Coates, G. W., Dunn, A. R., Henling, L. M., Dougherty, D. A. \& Grubbs, R. H. (1997). Angew. Chem. Int. Ed. Engl. 36, 248-251.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Forward, J. M., Bohmann, D., Fackler, J. P. Jr \& Staples, R. J. (1995). Inorg. Chem. 34, 6330-6336.
Hao, L., Lachicotte, R. J., Gysling, H. J. \& Eisenberg, R. (1999). Inorg. Chem. 38, 4616-4617.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hunks, W. J., Jennings, M. C. \& Puddephatt, R. J. (2000). Inorg. Chem. 39, 2699-2702.
Kuz'mina, L. G., Smyslova, E. I. \& Grandberg, K. I. (1993). Zh. Neorg. Khim. 38, 1009-1011.
Molecular Structure Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Nakamoto, M., Hiller, W. \& Schmidbaur, H. (1993). Chem. Ber. 126, 605-610.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Tzeng, B.-C., Schier, A. \& Schmidbaur, H. (1999). Inorg. Chem. 38, 3978-3984.
Vos, D. de, Clements, P., Pyke, S. M., Smyth, D. R. \& Tiekink, R. T. (1999). Metal Based Drugs, 6, 31-40.
Watase, S., Kitamura, T., Kanehisa, N., Nakamoto, M., Kai, Y. \& Yanagida, S. (2003). Chem. Lett. 32, 1070-1071.

Williams, J.-H. (1993). Acc. Chem. Res. 26, 593-598.

